Search results for "Wannier function"
showing 3 items of 3 documents
Wannier90 as a community code: new features and applications
2019
Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, s…
Ferromagnetic kinetic exchange interaction in magnetic insulators
2020
The superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms/groups. Here we show that explicit consideration of magnetic and (leading) bridging orbitals, together with the electron transfer between the former, reveals a strong ferromagnetic kinetic exchange contribution. First principle calculations show that it is comparable in strength with antiferromagnetic superexchange in a number of magnetic materials with diamagnetic metal bridges. In particular, it is responsible for a very large ferromagnetic coupling ($-10$ meV) between the iron ions in a Fe$^{3+}$-Co$^{…
Crystal field and magnetism with Wannier functions: Rare-earth doped aluminum garnets
2015
Using the recently developed method we calculate the crystal field parameters in yttrium and lutetium aluminum garnets doped with seven trivalent Kramers rare-earth ions. We then insert calculated parameters into the atomic-like Hamiltonian taking into account the electron-electron, spin-orbit and Zeeman interactions and determine the multiplet splitting by the crystal field as well as magnetic $\hat{g}$ tensors. We compare calculated results with available experimental data.